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X-ray Scattering by Aggregates  of Bonded Atoms.  II. The Effect of the Bonds: 
with an Application to H2 
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The X-ray scattering from an aggregate of bonded atoms can be dealt with in exactly the same way 
as when interactions are neglected, provided the atomic scattering factors (f) are replaced by effective 
scattering factors (re). The effective factor depends upon atomic environment and its precise 
definition involves the resolution of the non-localized charge cloud, which describes the bonding 
electrons, into formal 'atomic' components, f% which is generally a complex quantity, can be 
obtained fromf by vector addition of a correction, Af. The calculation of the correction involves the 
evaluation of a 'bond scattering factor'; the method of integration employed for this purpose is 
fully described. 

Finally, the theory is applied to the ease of a hydrogen atom in the hydrogen molecule. In this 
instance the correction required is large, fe is found to depend strongly on the inclination of the 
scattering normal to the axis of the molecule: as this inclination decreases the pronounced 
asymmetry of the system introduces a considerable phase shift into the scattered beam. The 
correction is perhaps exceptionally large in this case; but the nature of the results ttu'ows some 
light on other problems involving 'anomalous reflexions'. 

1. The  effective scat ter ing  factor for a bonded a t o m  

When interatomic distances are large the electrons 
associated with a number of atoms may conveniently 
be allocated to the various atoms, occupying orbitals 
which are essentially localised or atomic in character. 
The X-ray scattering from such an aggregate is then 
simply a sum of contributions, with appropriate phase 
factors, from the various atoms, each contribution 
(f) representing the scattering from a definite number 
of 'atomic' electrons. 

When the atoms are united in a molecule or crystal, 
we shall naturally t ry  to retain this type of description, 
replacing the atomic scattering factors (f) by effective 
atomic scattering factors (re). :But there is one im- 
mediate difficulty: those electrons responsible for 
bonding now occupy orbitals which extend over at 
least two atoms and possibly over the whole molecule 
or crystal--the 'charge cloud' no longer falls naturally 
into localized regions, with a definite number of 
electrons 'on' each atom, and yet we wish to make such 
a division, describing the charge cloud as a super- 
position of modified 'atomic' contributions. 

To a first approximation we assume, as is customary, 
that  the electronic wave function of the whole many- 
electron problem is represented mainly by one con- 
figuration (i.e. by a single antisymmetrised product 
function); the one-electron functions may then be 
either atomic or molecular in character and, provided 
they are mutually orthogonal, the total electron 
density is simply a sum of one-electron contributions. 

Those contributions arising from the inner shell or 
atomic electrons (which occupy strict AO's) have been 
dealt with previously (McWeeny, 1951a--hereafter I). 
I t  is now necessary to allocate the mobile charge (i.e. 
that  portion of the complete charge distribution which 
arises from the mobile or 'molecular' electrons) 
uniquely to the various atoms, distributing the charge 
allocated to each atom in such a way that  superposition 
of these 'atomic' contributions yields the full mobile 
charge distribution. This may be achieved conveniently, 
in the molecular orbital (MO) approximation which we 
employ, by using the concepts of (mobile) atom and 
bond charges, qg and q~ (McWeeny, 1951b): these 
quantities measure, respectively, the amounts of 
mobile charge on the atom /~ and in the bond ~--v .  
More precisely, the mobile charge associated with a 
group of electrons occupying MO's yJj = ~Vx~j~ may 

# 

be divided out into localized amounts q , - - ~ ' x ~ j  
J 

and "q~,~= 2S~.~,xt, jx~j , where Sl, ~ is the overlap 
J 

integral between orbitals q,, q~ and the summations 
extend over all electrons (a term being counted twice 
for a doubly filled orbital). These 'local' charges may 
conveniently be regrouped into 'formal' charges (Q,)* 
associated with the various atoms; we define Q, as 

Q, = q , +  ~Y" ½q,~ ,* 
v 

so that  the formal charge comprises the atom charge 
plus half the charge in each bond~ radiating from the 

* Q~ replaces the  q~ of o ther  au thor s  (Chirgwin & Coulson, 
1950); we n o w  reserve small  le t te rs  for the components  of  
Q~, i.e. for the  local charges.  

* The  pr ime indicates  omission of the  t e rm  v = ~t. 
t S t r ic t ly ,  the  s u m m a t i o n  includes all atom-pairs b u t  only 

adjace~it a toms  possess a subs tan t i a l  qvv- 

30* 
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atom. Summation of the formal charges (Q,) on one 
atom, associated with the various groups of molecular 
electrons (e.g. a-bond electrons, ~-bond electrons), 
gives roughly the number of valence electrons con- 
tributed by the atom; an appreciable difference imphes 
ionic effects and is most marked when atoms with 
widely different electron affinities are bonded, while 
exact equality would imply uniform spreading of the 
mobile charge and, as might be expected, occurs only 
in special cases (see, for example, Coulson & Rush- 
brooke, 1940). I t  remains to determine the effective 
scattering factor for each atom with its appropriate 
share of. mobile charge. 

Now Qg arises from a charge density function 

P, = q,e,+~Y" ½q,.e,.. 
y 

where qu = ~ and Quv = qD~,%lSu~" The scattering 
factor computed using an appropriate Pu for each 
group of molecular electrons may properly be called 
the effective scattering factor (if) for the atom in the 
given molecular environment. I t  is worth noting that, 
although their extent cannot be predicted without 
calculation, considerable insight into the nature of the 
modifications introduced by bonding can be gained 
from purely pictorial considerations. For the form of 
P ,  shows that  valence electrons originally on atom 
/x m a y b e  regarded as 'pulled' into the bonds, 
'knobs' appearing in these regions while the charge 
density nearer the nucleus is somewhat diminished: 
this picture will be found helpful in later discussions. 
I t  should, of course, be remembered that  the degree 
of distortion it governed by the overlap integrals S~ 
and is therefore strongly dependent on the type of 
bond considered: in ~-bonding, for example, the 
effect will probably be much less marked than in 
a-bonding. 

With the above definition, and with the notation 
of I, the contribution to ff  arising from the mobile 
charge Q~ associated with the ~th group of MO's, is 

f . (z)  = q~ I Q~ exp {iuS . r,}dr, 

+Z'½q'., I e x p  
. ru}dr u • 

We write 
" (~,)-4-~, ½q,.fu(~,.). (1) L ( ~ )  = q . L  ~ ' ~ " 

v 

Then f~(~) is simply the scattering factor for an 
electron in the AO ~ and has been dealt with in I, 
while f,(~v) may be called a 'bond scattering factor' 
for bond/~--v,  referred to atom /~. The coefficients, 
q~, q~, may vary widely according to molecular en- 
vironment; these coefficients, therefore, determine the 
effective scattering factor i n  any given environment 
in terms of f~,(~,) and fu(e~) which are, to a first 
approYimation, independent of the mobile electronic 
structure. The effective atomic scattering factor is 
therefore 

fe~= f~ ,c+~f~, (z )  , (2) 

where fuc is the factor for the inner-shell or 'core' 
electrons, and the summation embraces all systems of 
molecular electrons. 

Once the effective scattering factors, if, defined in 
this way, have been computed they may be used in 
the determination of structure factors in exactly the 
same way as the conventional f ' s ;  but now the effect 
of bonding is completely allowed for. Since, however, 
the definition and use of the ff 's presupposes con- 
siderable knowledge of the structure being determined 
(see also I) it is necessary (and would in any case be 
desirable) to make a preliminary analysis using much 
simpler and cruder f 's .  

2. The nature of the bond correct ion 

In order to introduce the effect of bonding as a 
correction to existing isolated-atom factors (I), we 
write (1) in the form 

= • • [ ( q . - n . ) f . ( e . ) + . ~  1 

where n~ is the number of electrons originally on 
atom /~ which go into the ~th set of MO's. Now 
f~c+~'n~f~(~)  : f , ,  the scattering factor for the 

T 

isolated atom in the valence state, and we may 
therefore write, from (2), 

fe~ = fu+Af~, , (3) 

where the correction term is 

=X' ' " [(q~,--n~,)f~,(@~,)+ ~ ½q,,f,(~,,)]. (4) 
T 

Now the charge density with which f~ is associated, 
as we have already seen, possesses generally neither 
centro-symmetry nor spherical symmetry about the 
centre /~. Apparently then, from elementary con- 
siderations, the correction Aft, must generally be 
complex, introducing a phase shift into the diffracted 
beam, and must be 'angle-dependent' in the sense 
that  it will depend upon the orientation of the bonded 
atom with respect to the scattering normal S. (The 
uncorrected factor f~ will, of course, itself exhibit 
angle-dependence if the isolated atom is non-spherical 
(see I) but the bonding effect considered here is quite 
general.) Aft, may therefore be written Afu : ]Af~,[e ~, 
and the combination of fu and Aft, to give f~ is con- 
veniently indicated in a vector diagram (Fig. 1). If we 
assume, as in Fig. 1, that  the correction is relatively 

f 
Fig. 1. Construction of the effecgive scattering factor re. 

small, then the phase factor introduced in the resultant 
f~ is clearly likely to be of minor importance; but the 
phase factor in Af~ actually determines the magnitude 
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of f~. In fact, if the resultant phase shift is negligible, 
f~ is an 'ordinary'  real* scattering factor given by 

f:, = f~,+lAf~,] cos $. 

In  certain cases (~ may vanish, either for particular 
orientations ((3 depends upon both scattering angle and 
orientation) or, more generally, in cases of centro- 
symmetry  of the atomic site; f~ is then certainly real. 
But  the dependence of f~ upon atomic orientation is 
universal, for no atomic site can possess spherical 
symmetry.  

In a subsequent section, we shall s tudy the hydrogen 
molecule, a case in which the correction Alf, is large 
and introduces great asymmetry  and a considerable 
phase shift in f~; but  we must  remember tha t  this is 
an extreme case. The importance of the correction will 
certainly be smaller for heavier atoms; a detailed 
judgement, however, must  await the results of 
calculations at  present in progress. 

Reduction of the integral 
The bond scattering factor is 

f ~ ( ~ )  = ~ ~0~(r,)~(r~)exp { i n S . r , } d r , .  (5) 

Taking the bond as an axis of polar co-ordinates, using 
the notation of Fig. 2 and put t ing n' = ~ISI, 

fl (~12) 
= $1---2~ q~l(rlOlq~)c~(r~O~c~) exp {in'r 1 (cos 01 cos 

-t- sin 01 sin ~o cos ~)}r~ sin 01drldOld~o .* 

Plane of R. $. 

R> \ 

Fig. 2. Notation used in evaluation of f1(~12). 

3. The bond scattering factor fv(0~,) 
I t  remains simply to calculate the bond scattering 
factors f,(Q~) which appear ir~ (4). Before doing so, 
it should be emphasised tha t  f , (0~) is calculated with 
reference to point/, as origin and represents the con- 
tr ibution per electron from the 'knob' Q~ (in the bond 
/z--v) to the scattering factor to be associated with 
point /z, f~. This choice of origin is convenient 
mathematically,  as well as formally, since the number 
of series expansions necessary in the integration is 
thereby kept  to a minimum, f,(Q~) can, of course, 
be subsequently referred to any other origin simply 
by  introducing an appropriate phase factor. Thus, 
for example, 

fi(Q~) = fi(Q~) = exp ( - - i n S .  Rv~)fv(0~,~), 

giving the bond contribution to be associated with 
atom v at  the other end of the b o n d / , ~ v .  

A rigorous calculation is extremely tredious but 
cannot be avoided if we are to provide the means of 
testing a method of approximation which will be 
introduced in a later paper. In  view of the approxi- 
mations inherent in the whole MO treatment  and our 
lack of exact knowledge of the most suitable atomic 
valence orbitals (and since, indeed, we are calculating 
a 'correction factor') it would be foolish to include 
tentat ive refinements which would detract from the 
general uti l i ty of the treatment.  For  this reason we 
shall usually construct our MO's from the AO's 
appropriate to the isolated atoms (using variational 
approximations as in (I)) and shall assume a ' s tandard '  
bond length where possible; the effect of refinements 
will only be examined when satisfactory mathematical  
techniques have been developed. 

* We assume here and in Fig. 1 that f~ itself is real; in some 
atomic valence states f~ may be complex (see I) but the 
requisite modifications are obvious. 

The method of integration which we shall employ in 
this paper breaks down when the wave functions in- 
volve ~, in which case the problem becomes most 
unwieldy, but  even with this restriction the method 
is applicable fairly generally (in particular, to mole- 
cular a-bonding, where overlap is large and the effect 
of bonding is likely to be most marked). 

q~l(rlO1)q~2(r202) may be expressed as a sum of terms 
r~,r~2e -c,r,-c:~ (cos 01) m, (cos 02) m~, where nl, n2, ml, m 2 
are usually integral, taking zero values in the simplest 
case (overlapping ls orbitals). 

The contribution of such a term to fl(Q12) will be 
denoted by fl(mlm~nln2)~; the ~-integration is then 
standard, giving 

2rr I f r~,r~,e-C:,-c:~ (cos O1)m, (cos O2)m2 

exp {in'r I cos 01 cos ~} Jo(n'r 1 sin 01 sin ~)r~ sin 01drld01. 

In order to complete the integration it is necessary 
to express r~,e -c:. (cos 0~) m, in terms of the chosen 
variables rl, 01. Expressing (cos 0~) m~ in terms of 
cos 01, using r 1 cos 01 = R--r~ cos 03, we may  write 
all integrals (and hence, finally, fl(ele)) in terms of 

J(klm) S S ~-~r~-le -~::~:, = 1 ~ cos k 01 exp {in'r 1 cos 01 

cos ~}Jo(n'rl sin 01 sin ~)r~ sin 01drld01. (6) 

This is a generalization of an integral (J(klm)) con- 
sidered by Barnet t  & Coulson (1951) (hereafter BC), 
whose notation we adopt, reducing to their "case when 
u ' -+  0. When n ' ~  0, the 01 integration is no longer 
straightforward, but  provided k is small (as it is with 

* Here and elsewhere the integrations extend over the usual 
domains of the variables indicated. 

t Only the numbers labeling a term are explicitly referred 
to; the dependence on the various parameters is not indicated. 
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the simpler wave functions) the following reduction 
is practicable. Making the usual expansion (BC), 

2n~-I  
r~ -~e-~2~= ~ ~ Pn (COS 01)$,,~(c~,R;r~) , (7) 

we put, in the resultant integrand, cos ~ 01Pn (cos 0~) 
.~, an,Pn. (cos 01) determining the several non-vanish- 

ing coefficients, a~,, by standard methods. J(klm) is 
now expressed as a sum of several (strongly convergent) 
infinite series, a typical term of which is 

Jn(n'lm) = f I '~-~e-~''Pn" (cos 01)~,nn(C~, R; rl) 

ex-p(ix'r I cos0~ cos y~} Jo(X'rl sin01 sin ~)rl sin 01grid01. 

The 01 integration may now be performed using a 
result given by Gegenbauer (1877) (see also Watson, 
1922) : 

I exp (iz cos 0 cos y~)J,_½ (z sin 0 sin y~)C~ (cos 0) sin ~+½0dO 

= (i)'  s in'-½ ~ (cos ~)J,+,(z). 

Remembering CJ(z)----P~(z), we have 

J~(n'lm) 

(2~\½ n' t' 
-~ ~-~7) (i) Pn' (cos y~)~ ~0 ~e-:'r'Jn'+½(x'rl)$~n(c~Rr')dr~ 

(8) /2~\½ n' 
---- ~-~7) (i) Pn' (cos v2)Zn(n'lm ) , say .  

Z,,(n'lm) is again a generalisation of an integral 
studied by Barnett  & Coulson at a corresponding 
stage in their calculations. As these authors show, 
the $~n are expressible as linear combinations of $o~ 
functions, the latter being 

~on ---- In+½(c~.rl)Kn+½(c~R), r 1 < R ,  

-~ In+½(c2R)Kn+½(c~rl), r 1 > R .  

The only types of integral remaining are now 

I Rr~e-C,r,Jn,+½(~.'rl)In+½(c2rl)drl and 
0 

fTrlle-c'r'Jn,+½ (x' rl)Kn+½ (c2rl)drl . 

I t  is convenient to introduce the variables t --cgr~,  
x ---- x'[c~., y -= cgR, c -~ cl/c~., in which case we re- 
quire only 

i;tZe-CtJm+½ g(lmn) -= (xt) In+ ½(t) dt, 

9[(lmn) --~ f~tlek~tJ,n+½(xt)Kn+½(t)dt. (9) 

The actual evaluation of these basic integrals will 
be considered in an Appendix. Simple numerical 
integration (used successfully in the BC integrals) is 

unfortunately out of the question at every stage in 
our calculations since the presence of the Bessel 
function makes the integrand oscillate strongly. 

4. The  hydrogen  molecule  

The bond factor fl(~)12) is, with 

q~l(r) : qJg(r) : qnl~(r) : Nlse -~r, 

1 

+ sin 01 sin ~o cos qo)}r~ sin 01drldOldq). 

In this ease the reduction to J(klm) is immediate, 
giving 2~N~ 

f~(~12) -- - -  J(011),  
where $12 

J(011) -~ I I  e-~(r'+r2)exp {ix'r 1 cos 01 cos ~} 

Jo(x'rl sin 01 sin y~)r~ sin 01drld01. 

Since /c ~ 0, n' = n; and insertion of the expansion 
(7), followed directly by integration over 01, expresses 
J(011) in terms of the Z-functions: thus, from (7) 
and (8), 

1 o~ 
J(011) = R-~ n_=~0 (2n-d-1)Jn(nll) 

= ~ (2n-t-1)(i)nPn(COS ~o)Zn(nll), 

where 

I:rle-~r'Jn+½(x'rl Zn(nll) : ) ~ln(iX, R; rl)dr 1 . 

Writing $1n (#, R;rl)  as a combination of S0n-functions, 
we find 

#Rrl  
~ln (/x, R; rl) --  2n ~- 1 (~ 0 ~-i-1 (/~, R; rl)-- $0z-~-i (/x, R; rl) }. 

Finally, putting t~r 1 -~ t, ~¢'/# : x, #R  : y, 

Zn(nll)  
Y 

= ~3(2n ~- 1 ) [Kn_½ (y) g (2nn-- 1 )--Kn÷~ (y) g (2nn-4-1) 

+ In_½(y)9[(2nn-- 1 )--In+](y)9[(2nn-t- 1 )] 

in terms of the basic integrals (9). The integrals are 
evaluated (see Appendix) using the correct bond length 
(R ~ 1.4 atomic units) but, for reasons already 
discussed, with no 'screening constant'  correction, i.e. 
talcing # ~ 1. For small-angle scattering the series 
expansion converges fairly quickly and the integrals 
need be computed only for small n; but in computing 
the scattering curves (Figs. 3-5) for the higher angles 
( x ~ 4 )  as many as fourteen convergents are re- 
quired in order to obtain four-figure accuracy. 

Results and discussion 
A very convenient check on the calculations is 

afforded by the centro-symmetry of the bond charge 
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~1~ about the mid-point. The associated scattering 
factor, referred to this origin, must consequently be 
purely real: and change of origin to atom 1 can only 
introduce a phase factor exp {27dz'R cos yJ}. The 
factor fl(Q12) must therefore be of the form 

fl(e~2) = JA(elg.)J exp {2~ix,'R cos yJ}. 

Comparing this with the results of our calculations, 

fl(e12) -=-- A + i B ,  

we see tha t  the ratio of the two infinite series, A, B, 
is completely determined by symmetry,  whatever 
values ~ and the scattering angle may have; in fact, 
B/A = tan  {2r~z'R cos yJ}. Our calculations were con- 
tinued until this equality was satisfied to at  least five 
figures; the real factor If1(~12)1 was then evaluated 
and all results were rounded off to four figures. 

1"0 

0'8 

0"2 

0 
0 

O'b 

f(e,~)l 
0"4 

' 0"2  ' 0 !z, ' 0 ! 6  ' 

X = (sinO/~) (A- ')  

Fig. 3. Magnitude of the bond scattering factor fl(Q19). 1, 2, 3 
refer to orientations ~ = 0, ¼z, ½z. 

! '0 

0'8 

0"5 

'0',' 

0 0.2 0.4 0"6 

0 0"2 0-4 06 
X = (s,n 0/~.) (,£,-') 

I~f 

Fig. 4. Magnitude and phase o f / I f  for H in H2. 1, 2, 3 refer to 
/If  with orientation y~ ---- 0, ¼~, ½~. 4 is the scattering factor 
for the isolated atom. 

charge has migrated away from the atom into the 
bond. 

Finally, the correction is applied to f, giving the 
effective factor ft. Generally fe is of the form ]feIei~; 
in Fig. 5 Iff] and ~ are plotted for the three orientations 
considered. Comparison with the unmodified f curve 
shows tha t  the correction is quite small when y~----lz, 
i.e. when the bond lies in the plane of reflexion, but  
tha t  the effect becomes more and more marked as yJ 

In Fig. 3 Ifl(~l~)J is drawn as a function of X = 
(sin 0/~t) (as in I) for three inclinations of the scattering 
normal to the bond axis, ~ = 0, ~z, ½.n. The marked 
departure from sphericity of the bond charge evidently 
has a very considerable effect upon the scattering; 
the curve for y~ = 0 shows a characteristic interference 
effect, crossing the X axis in the region 0.5 < X < 0 . 7  A. 

Using (4), we now calculate the correct ion/If  which 
must be applied to the isolated-atom scattering factor, 
f. I t  is easily shown tha t  in the hydrogen molecule, 
with our particular choice of wave functions, 

1 2S 
ql -- 1 - F S -  0.5705, q12 -- 1 -FS- -  0.8591 . 

/If  is of the form JAfle i~ except when yJ--= ½~, in 
which case S is normal to a plane of symmetry  and 
the phase ~ vanishes. I/ifl and ~ are plotted in Fig. 4, 
again for the three cases yJ ---- 0, ¼~, ½~. I t  is interesting 
to note tha t  / i f  always lies in the second or third 
quadrant,  showing tha t  the correction leads generally 
to a reduction in magnitude of the atomic scattering 
factor; this corresponds physically to the fact that  

1"0 

0"8 

0"6 

!tel 
0"4 

0"2 

0 , , , i 

0 0!2 0 !~ 016 

Ol , r  , , , " , , ~ ,  , - -  
0 0-2 0.4 0.6 

X = (~i°op.) ( h - ' )  

Fig. 5. Magnitude and phase of fe for H in H e. l, 2, 3 refer to 
fe with orientation y) = 0, ¼.~, ½~. 4 refers t e l ,  the scattering 
factor for the isolated H atom. 
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decreases, i.e. as the bond becomes normal to the 
plane of reflexion. Simple considerations, based upon 
the spread of charge, obviously support these con- 
clusions; but  the magnitude of the correction is 
perhaps alarming. I t  must, however, be emphasized 
tha t  this particular case is an exceptional one in so 
far as the 'atomic' scattering factor arises entirely 
from molecular  electrons. 

These results may shed some light on a well known 
example of anomalous scattering. The intensities of 
reflexions from carbon in graphite cannot be reconciled 
with a single f curve and recent precise experimental 
work (Bacon, 1951) shows tha t  the departures from 
such a curve (the valence state f curve given in I) 
are considerable. I t  now appears tha t  the (00/) re- 
flexions, for which the bonds lie in the reflecting 
planes, may  be roughly 'normal' ,  lying near the 
isolated-atom f-curve; but  the intensities of all other 
reflexions might be considerably depressed by the 
bond effect. This interpretation would certainly be 
consistent with the experimental results; a complete 
theoretical analysis will, it is hoped, appear shortly. 

A P P E N D I X  

The integrals (9) have been met with by other workers 
and, using the recurrence relations for In(z) and 
K,(z), various recursion formulae have been listed 
(e.g. Duncanson, 1942). In principle it is possible to 
obtain all the integrals required in the hydrogen 
molecule calculations from the twelve integrals* 

9"(10-1) 9'(1-10) 9"(100) 9"(20-1) 9"(2-10) 9"(000) 
and 

~(10--1)  9t'(1--10) 9i'(100) 9[(20--1) 9[(2--10)9f(000), 

by repeated use of the appropriate formulae. I t  should 
be noticed tha t  these formulae presuppose a knowledge 
of the Bessel functions In+½(z), K~+½(z) for the z value 
z ---- ttR; it was necessary to compute these functions 
accurately for n = 0, 1 . . . . .  13, no adequate tables 
at  present existing. All the above integrals, apart  from 
the last member of each set, can be evaluated in 
closed form, the Bessel functions reducing to circular 
or hyperbolic functions. 

9"(000), 9i~(000) may be expressed as t 

where 

and 

1 1 
9"(000) ---- ~ ( A - - B ) ,  9f(000) = ~ C,  

J~V,O V ~, 

A = S i ( xy ) ,  C = tan-l(½x)--B 

I Y e -:t sin xt  
B - -  dt 

*)0 t " 

* This choice is not an obvious one: but certain recurrence 
formulae break down for the starting values of l, m, n. It 
also seems advantageous, where possible, to evaluate first 
9"(lmn), ~(lmn). Once the integrals with I---- 1 have been 
evaluated the l = 2 integrals follow very simply. 

~f In the case of interest (c----1): more generally there are 
two integrals of type B. 

Duncanson (1941) evaluates B by a series expansion 
but  for our range of x values this is impracticable; 
it is then convenient to obtain B by numerical in- 
tegration of the differential equation 

d B  I y e_ ~a -- cos xt  dt , ( c ~ 1) 
dx  ~o 

the latter integral having been already tabulated as 
a function of x, in the calculation of 9"(1--10). This 
method is quite satisfactory in dealing with the 9t~'s, 
which increase fairly steadily in magnitude; but  the 
9"s, which are built up by repeated differencing of 
nearly equal quantities, rapidly becomes so inaccurate 
as to be quite useless. In this case it is necessary to 
evaluate the highest members of the required series 
of integrals and apply the various recurrence formulae 
i n  reverse: thus, in the calculation of the preceding 
section it was necessary to start  with 9"(1, 14, 14), 
9"(1, 13, 14), 9"(1, 14, 13), 9"(2, 13, 14), 9"(2, 14, 13). 
These integrals are evaluated by a double series ex- 
pansion. Thus, we find, 

(2x)m+ 1 o~ 
9"(lmn) - -  V(27~x ) ~ (--x2)rAm(r)9"(2r-~-m-4-1, n) , 

r=O where 
2q+l co 

9"(P' q) -- ~/(2~) ~y' A q ( s ) F ( p + q + l + 2 s ) ,  
S=0 

( m + r ) !  
Am(r)  = r! ( 2 m + 2 r + l ) !  

and 

F ( n )  - -  f v the - a  dt (an incomplete Gamma function).  
¢0 

Although these expansions are quite strongly con- 
vergent, it was necessary to tabulate  the Gamma 
functions up to F(50); again, in order to secure 
sufficient accuracy, it was necessary to build up the 
F ' s  by working downwards  from F(50) using the re- 
currence formula, 

1 
F ( n - -  1) = n [F(n)--Y'~e-Y] " 

I t  is a pleasure to acknowledge the patience and skill 
of my  wife, who is jointly responsible for many of the 
arduous calculations of this paper. 
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